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SUMMARY

Two methods of construction for GDR designs has been presented,

which minimise mean square bias with respect to weight densities of a
particular type.

^ Introduction
As stated in Part I, we are interested in those Group Divisible

Rotatable (GDR) designs, which minimise the weighted mean
square bias against a higher degree polynomial, with respect to a
given weight density. We shall consider here, second order GDR
designs, which guard against the mean square bias arising from the
assumption that the actual response function is of third degree. The

' . methods described below are for constructing designs with all odd
moments of order upto fifth zeroes and with the second and fourth
ordermoments equated to those of a given group wise spherical
distribution.

Wesee that for m groups, the rth group consisting pf M; factors,
a GDR design is specified by the following parameters, the values of
which are to be given by the specific weight density assumed.

i=\, 2 m, i=I, 2,..., m.

Oil', i¥=i', i, i'—l, m.

Now, since these are if) d's, for large values of m, the task of
equating 6's to a set of as many specified values may be difficult to
manage. Moreover, any values of 6 will not satisfy the non-singula-
rity condition. For m=2, there is only one 6. In that case, the
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range of 6 satisfying the nonsingularity conditions is asgiven in (4.2)
in the preceeding article. The method described by Adhikari and
Sinha [1] satisfies this condition, and so can be used for constructing
a GDR design with m=2. Their method can be suitably modified >-
in order to make the moments of the design same as those of a given
group wise spherical distribution, provided those moments satisfy
one more restriction, namely, The extension of this
method, to any general value of mfor ^,7' = 1, is considered in
more details in section 3.

For vahies ofmgreater than 2, the nonsingularity condition in
terras of 6u' s and X4''' 'j can be derived recursively. The parameters
ofthegiven distribution should satisfy that condition, and then it
may be possible to find out method ofconstruction for those cases,
although the method may not be very easy and may include too
many design points. But a simple general method not requiring a
very large number ofdesign points, i.e. a method applicable for any
tn and any form of groupwise spherical distribution is unlikely to
exist, and has not been attempted in the present paper. However,
when the weight density is the product of mspherical densities, we
suggest two simple methods of construction, described in section 2. k
If furthermore, «i=Wa=-"=Wm=». and the weight density satisfy the
condition

^constant for i=l, 2,..., m.

we can extend the method of Adhikari and Sinha [1] with slight
modification to this general case and that is discussed in section 3.

2. Method of Construction Assuming the Weight Density to
be the Product of a Number of Spherical Weight Densities

Let us suppose that the given weight density is the product of
m spherical densities, m>l.

Method 1. At first, we construct second order rotatable
designs for the different groups of factors with all fifth ordermoments
zeroes and the second and fourth order moments equated to those
specified by the corresponding spherical densities, following
Mukhopadhyay [7].

Let Hi be the matrix consisting of the experimental points as
columns in the design constructed for the ith group f=I,

Then, H,=[F,lG,l
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where F, is the set of fF,=2frt( points ofa fractional factorial (2",)
design of resolution VI and

Gi= [bi Irif i —I Cflni I Cf/nj]

Now let us partition Ft into submatrices andF/j in such a way
that each of them constitute a fraction of a experiment of resolu
tion V. We can do this by conveniently taking and as the 1/2
replicates of F,' other methods of doing the same thing not being
ruled out.

Then we define a special product of matrices, Let
be 2 matrices. Let a, be the i-th column of A and let

Ai{h)=iaia,...ai]„^xk

Then we define

(Aiin^) Aa(rt2) ••• An.M)
A*B= [ (6.L1)

, B B B )

Let /r,i=[F,j 1G,-] and ffia=[F,2 1G,].

Then the complete set of experimental points is given by the columns
of the following matrix.

m, ... I Hi, * ... *H„„]

Foi rti<5, v/e take

In this design, all fifth order moments are zeroes, and the second
order and fourth order moments are as follows

~ 2 7t (WO +^nj) (W, +2(6..'=+c,^)}
N ili

where

and N=2. tt (JVj+4nj).
1=1

- - {W,+2(bi''+c,')} (2.1)
Wj+4nj+4nj

3 U"^{W,+2(b,'+c,')}/(W,+4m) (2.2)



l2 JOURNAL OF THE INDIAN SOCIETY Of AGRICULTURAL STATISTICS

(2.3)U^'^=Wil{Wi+ATii)

a Wt+ lijA +Cf) W,'+2(bt'+cf')
Wi'+4rti'

. Xa'f) ,i^i'

From (2.2) and (2.3), we get

V+c,^=2^F,-

Again X4(i'/(X2"')'=P2<''

for the given spherical weight density.

From (2.1), we obtain

2(fc? +cf)^iWfiW,+4it,)j^z '̂>]i -IVi

solving(2.4) and (2.6), bi and cf are obtained.

Example

Let us coasider an weight density which is the product of 3
circular uniform densities,

i.e. ^f(xu X2,..., Xa)=c

if

=0, otherwise,

where c is so chosen that (2.7) is a density function.

Here =2/3, i=\, 2. 3. .

The set of experimental points is given by the columns of

H=Hi*Hz*Ha, where

1 1-1-1

I -I 1-1
H,=

b, -b,

0 0

c, —a

0 0

(2.4)

(2.5)

(2.6)

0 0

b, -b,

0 0

Cl ^Ci

.2=1The approximate values of the constants are given by 1.985®
and c.-®=-0.255l
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Method—2

Let Fk denote a suitable fraction (say 2'_th) of a 2* factorial
—L design in which no interaction of order<5 isconfounded, where k is

an integer and let/fc=2*"'.
s m

Let v—b 2 n,.
i=\

Then the experimental points may be chosen in the following
manner.

1. For each pair (/, i'), we take/y points of Fy in which all the
levels of factors in the Hh group are changed to±fl, and those in the
i'-th group are changed to±a,'. f#/', the levels of the factorsin other
groups not being changed.

2. Let «=max n,.
/

Then we consider a GD design Gi (v, b, r, k, Xi, X2, m, n) with
Xb>Xi and v=mn. We delete n—tti treatments from the i-th group
of treatments, f=I, 2,..., m thus reducing Gi to another design Gg
with «/ treatments in the j-th group and unequal block sizes. Let k
be the maximum block size of G®.

Then we take/fc points of Fk corresponding to each block of G2,
treating the treatments in that block as factors, and thus obtain b.fk
points in the second set by multiplying all these points by a
constant d.

3. 2v points of the form (0...0, 0...0, 0, ± bi, 0...0. ...0...0)
where Z>, is the value assigned to a factor in the Hh group,
i=\,2,...,m.

4. 2v points obtained by replacing hi in the third set by Cc

5. nQ=N—{^) fv—b /fc—4v centre points may also be
included, if necessary.

The constants fl,, 6,, b, i=l, 2, and d are to be determined
so that the group divisible relatibility conditions are satisfied.

From those conditions, we have

i /v {(V)+('W-1) a\)+rfk d^+l{b\ -fc?) (2.8)
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/v {('"a-M+Cwi-D af]+rfk d'+l {b\+ct) ] (2.9)

/v{(V)+('"-l)«i}+Xi/;t'̂ ^] (2.10)

('"~^)+(m-2)( flf+ of, )+affl f,y
fn #

We take d^= ĵ, so that

Now, since 0ii'=X2'*'.X2'*''

=(X4«Vp2< '̂). (X4«"/Pa'*")''^

therefore, from (2.12), we have

âf+m—2 j =pi af +(I+X1/X2)
where j?i=(w—l)/(|3a'''),

resolving which, we get

af=(;'/-I)'' /M-2±(/)/»'-'")Mm—2-(P«-i)/2

(1+Al>^2)j^
From (2.9) and (2.10), we have

2( +<)=«" ("»-!)[ (^-2) (1- -^')+2
Again, (2.8) implies

2(^.f+cf)=(A^./,)V^ (a. +rn-2)-fj^"'-^)

-{m-\)fyaf-r (/,, /s/Aa) '
by virtue of (2.5).

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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Substituting the valueof af from (2.T3) to (2.14) and (2.15),
weget two equations in b^l and cf.and, solve them. ,,

Example. Let us consider the weight density given by (6.1.6).
Here v=6. m=3, n,=2, p2"'=2/3, /=l,2,3./v=2®=32.

We consider the following GD design with v=6, 6=4, r=2, k=3,
Xi=0, X2=l, 'w=3, «=2 with treatments (1,2), (3,4), (5,6) ' - /

1 3 5

1 4 6

2 4 , 5

Here/A=8.

The experimenial points are as follows

1. (±01,

• (±ai.

• .(±1,

±01, . ±aa>

±Oi, ±1.

±1, . ±02.

±^2; ±1, *±1) -

±1, ±03, ! ±03)

±02, ±<33,. ±03)

2., {±d,

^ (±d,

( 0, ±rf,

( 0, ±d,

0,

0,

±d, 0,

0, ±d,

±d, 0.

0, ±:d.

3. (±^>1, 0, 0,

( 0, ±Z)a, 0,

( 0, 0, ±62, 0,

.. . .( 0,. 0, . 0. ±Z»a,

( 0, "0, 0,

( 0, 0, 0,

0,

0.

±d, 0)

0, ±d)

0. ±rf)

±d, 0)!

0, 0) : ,

0, 0)

0. ^0)
0, 0)

0, ±63i 0) . •

0, 0, ±63)

96 points

32 points

, 12 points

4. The fourth set is obtained by replacing b, in the third set by c,.

5. Centre points are not needed. The approximate values for the
constants are given by

^"=2, of=0.5, cf=0.2,/-I,2,3.^
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6. A modification of the method described by Adhikari and Sinha
(1976) to any general value of m, for the case 0»'=I, and
number of factors in each group equal (say n).

Let y=mn,

Let us suppose that the given group wise spherical weight den
sity is the product of m identical spherical densities, so that

P2(»'=^4"V(^a'" =const=c(say),

i.e. X»«'=(X4<"/c) '̂' (3,1)

Then we considera GD design G (v,b, r, k, Xj Xj, m,n) such
that

cX»>Xi and 2cXs+^i>r.

We consider the following sets of experimental points.

1. For each I, we take/„ points in which the levels of the
factors In the ith group are same as those ofF„ and the levels of
factors in any other group are zeroes (/n and Fn are as defined in
method 2 of section 2), f=l, 2,.../n. ^

2. The same set of points, as chosen in method 2 of section 2.

3. 2v points of the form

(0....,0,±6,0...0)

4. 2v points of the form

(0,....0,±c. 0...0)

5. if-m.fn-b.fh—Av centre points, if necessary.

The constants b, c and d are to be determined, so as to satisfy
group divisible rotatability conditions.

From those conditions, we have

(Z.«+c«)) (3.2)

3X4<« = iV-i (/„+r bt d^+m+c^)) (3.3)

(/„+Xj/i d^) (3.4)

ei,'=N-K\fid\ (3.5)
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From (3.4) and (3.5), using (3.1), we have

X2/fc^'= (/»+Xl/fc^/4)/c

or d^^fj{{c\^-h)fk} (3.6)

^ Again, (3.3) and (3.4) iinplies
2{b^+c^)=2f„+{3\-r) /i

=(2cX2+Ai—r)/„/(cXa - Xi)

^ using (3.6) and (3.7).

From (3.2) and (3.1), we have ^
2(i2+c2)=(^X2/i d^ (3.8)

-X. Solving (3.7) and (3.8) we obtain and c".

• Example.

^ Let us consider the weight density which is the product of 3
circular normal weight densities, z.e.m=3 and n=2.

We know that, for this density, Pa=3.

Here/„=4,/i=8.

We choose the same GD design, as was chosen in the example
of method 2. The experimental points are as follows

1. (±1, ±1, 0, 0, 0. 0)
. ( 0. 0, ±1, ,±I. 0, 0)

(0, 0, 0, 0, ±1, ±1)

2. The same points as was chosen in method 2.

3. The columns of the matrix [67a |—W(|]

4. The columns of the matrix [c/g 1—c7a]

5. Central points are not needed. The value of the constants
are given by

(/4=0.17, Z>''=1.61, c«=0.3
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